

Opportunities for decarbonisation: how are these applied in the real world?

Silvia Minetto

National Research Council (Italy)

ENOUGH DEMONSTRATION CAMPAIGN

Overall Objective: Demonstrate promising **technologies** and improve their performance in **real-life situations**

ENOUGH project develops and showcases innovating and advanced (TRL5-TRL7)
 technology demonstrators to achieve neutral carbon food business

21 Demo cases in operation

All demonstrators represent real life chances to decarbonise the food chain and provide evidence on how to reduce emissions

PILLARS BEHIND SELECTED TECHNOLOGIES

INTEGRATE AND OPTIMIZE ENERGY FLOWS

INCREASE ENERGY EFFICIENCY

ELIMINATE FOSSIL FUELS AND INCREASE RENEWABLES

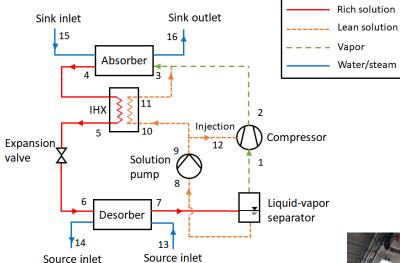
IMPROVE PROCESSING AND PRESERVATION CONDITIONS

REDUCE FOOD WASTE

USE NATURAL WORKING FLUIDS and MATERIALS

DEMO MATRIX

Industry Workshop

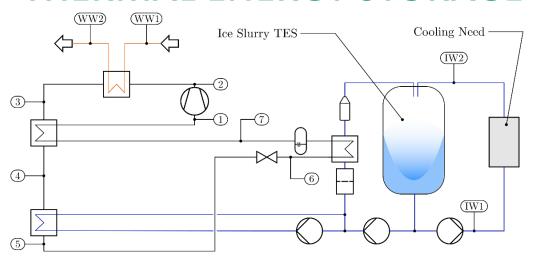

			®		MILK		
			Meat	Fish	Dairy	Fruit&Veg	Other
	O						
Processing	•		D14	D15,18,20	D2,3&4		
Transport		D7&8				D6	
Storage&Retail		D9,10,11,16&19				D5	
Domestic		D12&13	D17				
Other						Įή	3 D1,D21

HIGH TEMPERATURE HEAT PUMPS

Pressurized water @110°C
100% natural refrigerant
Reduced CO₂e emissions by
up to 87.3% and 46.8% for
the Norwegian and
European electricity grid
scenarios (vs gas boiler)

NH₃ and H₂O as the Refrigerant Waste heat recovery Oil free compressor

HTHP INTEGRATION IN A DAIRY


NH₃ as the Refrigerant Waste heat recovery High Temperature module

100% natural refrigerant31% of heat demand for CIP supplied by HTHP170 t CO2e savings per year

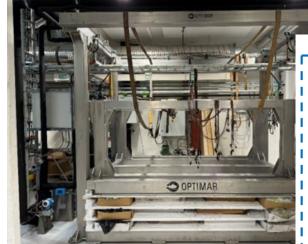
Industry Workshop 13 August 2025 Manchester (UK)

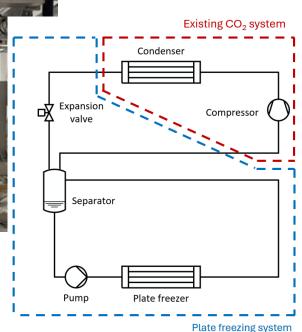
THERMAL ENERGY STORAGE

Energy Smart Dairy

Chiller&Heat Pump function CO₂ as the Refrigerant **Hot and Cold TES** PV integration

100% natural refrigerant -10% emissions during **ENOUGH** project


Thermosiphon Thermal Accumulator


CTES integrated into display cabinet

1.4 h power shut off without significant impact on product Integration with the grid

FREEZING TECHNOLOGY

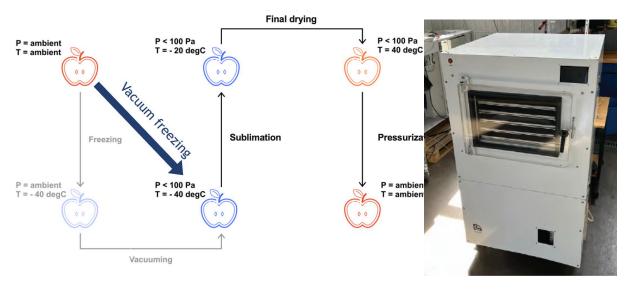
Plate freezing

Plate freezer CO₂ as the refrigerant -50°C evaporation temperature

100% natural refrigerant
59% energy reduction vs baseline
43.6% process time reduction with
evaporation from -36°C to -50°C

Blast Freezing

CO₂ as the refrigerant -50°C evaporation temperature


100% natural refrigerant
Reliability assesment
Transient operation below the triple point
Oil return

FREEZING TECHNOLOGY - Quality

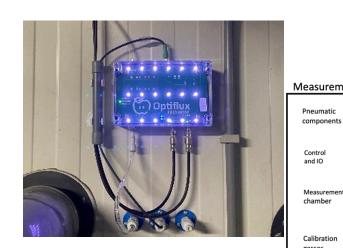
Brine freezing

Single stage or two-stage freezing Explore savings and practical implications

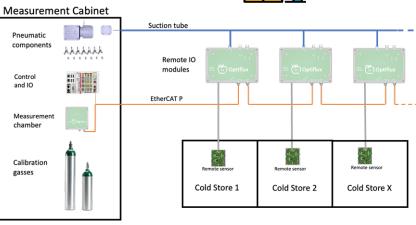
Partially brine freezing followed by tunnel-freezing allows for **14% energy savings** (vs traditional tunnel)

Brine freezing of single pelagic fish helps in retaining **natural fish shape**

Long term food storage


Apply vacuum freezing for domestic use R290 unit

38% energy reduction for 3kg load 40% process time reduction for 5kg load 100% natural refrigerant (propane) Log term zero-energy preservation



IMPROVED PRESERVATION: DCA and SUPERCHILLING

DCA storage of Fruit

Up to 15 % lower energy consumption compared to conventional ULO storage

100 % organic (no chemical treatments needed during storage)Eliminating fruit disorders such as superficial scaldTailored to each specific batch of fruitLonger shelf life compared to ULO storage

Superchilling Compartment

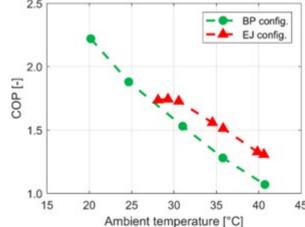
Compartment at -2.5°C (±0.8°C)

Beef and lamb **shelf life extended** from ~4.5–6 days (chilling) to >16 days (superchilling)
Delay of at least 10 days in reaching critical microbial thresholds

ELECTRIC UNITS FOR TRANSPORT

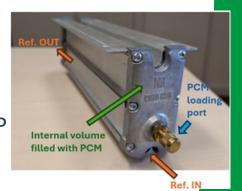
eLCV vehicle (fresh products)

CO₂ as the Refrigerant Ejector based cycle PV supported



Insulated box for last mile (frozen products)

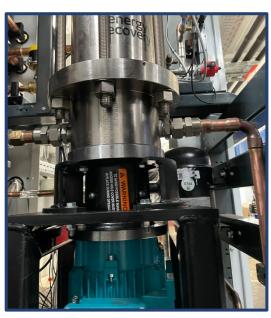
Propane as the Refrigerari Eutectic pipes


100% natural refrigerant

Total annual reduction in operation emissions between -30.0% in cold climates (Helsinki) and -15.5% in hot climates (Phoenix) vs R134a

100% natural refrigerant

-8% freezing energy input (ATP test conditions) vs R452A


Industry Workshop 13 August 2025 Manchester (UK) 11



SOTA COMPONENTS AND DIGITAL TOOLS

Pressure Exchanger for Retail

CO₂ as the Refrigerant Booster System for supermarket

100% natural refrigerant+15% average COPReliable operation up to 43°C ambient

SDS framework (monitoring and improvement distributed decision dashboard action making) (KPI-based) SDS Node 2 SDS Node 1 \bowtie request/feedback Doing well so far proc. data improvement request/feedback SDS Node 3 request/feedback

Holistic Supply Chain Management and Control

Smart Data Systems platform committing supply chain actors in a continuous decision-making and feedback loop

Address complexities of supply chains in real-world contexts towards emission reduction

Application to Dairy, Storage and Retail

Industry Workshop 13 August 2025 Manchester (UK) 12

WP6 KEY MESSAGES

- Future food chain can rely on **100% natural refrigerants-based** technologies (D2,3,4,5,7,8,10,11,12,14,15,17,18,19,20)
- Flow Integration, Energy Storage, Heat Recovery, use of Waste Heat are key towards decarbonization (D2,3,8,9,11,14,16,18)
- Electrification is possible for industrial processing heating and transport (D2,3,7,8, 14)
- Adopt innovative storage methods (D4,5,12,17) and processing (D15) to reduce food waste at professional and domestic level
- Advanced control guarantees emission reduction and trustability of the chain (D1,D21)

13

CONCLUSIONS

- Technologies for food chain decarbonisations do exist
- ENOUGH has adapted, implemented, improved and documented 21 technologies, spanning from large industrial appliances, to small domestic ones, components and digital tools
- Cooperation of research organisation and industrial partners and stakeholders
 throughout the project and further lay-out of business plans has been the key
 towards success
- Results are openly available for different stakeholders, conveying key recommendations to academia, industry, market, policy and society

Final public reports for all demos soon available on ENOUGH website

ENOUGH
EUROPEAN FOOD CHAIN SUPPLY
TO REDUCE GHG EMISSIONS BY 2050

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 101036588

THANK YOU!

enough-emissions.eu