

UK emissions from industrial, commercial and transport refrigeration in the UK

Catarina Marques | London South Bank University

Workshop Presentation

TICR Scope

A data driven whole-systems approach to support decarbonisation and innovation strategies across all six sectors

Refrigeration
Energy & Emissions

Surveys & Benchmarks

End user guidance

Models & Roadmaps

Policy opportunities

TICR Energy & Emissions per sector

TICR Energy & Emissions

TICR represents ~6% of the UK total energy consumption and 1.7% of the emissions

Site surveys best practice

- Sub-meter energy use of refrigeration system & components
- Pro-active refrigeration optimisation (assess and rectify performance against a digital twin)
- Reduce condensing temperatures
- Install variable speed evaporator fans/motors that adjust speed to load
- Increase evaporating temperature (at design stage)
- Ensure F-Gas logs are maintained and available on site
- Implement a Preventive Maintenance Plan (regular condenser cleaning, refrigerant leak checking, etc.)

Industry Challenges:

Need for training, regulation, designer qualifications, and cultural change to meet net zero goals

Benchmarking tool

Self Assessment Survey at www.netzerorefrigeration.uk

TICR Net Zero Benchmarking Survey

1. Setting your net zero refrigeration benchmark

This self-assessment tool provides businesses in the transport, indust a method to evaluate their current position and future opportunities to

ect

nent.

HFC/HFC blends e.g. R410a/R407C / HFO blends such as R1234yf etc.

Mix of systems some using using low GWP refrigerants (e.g. Carbon Dioxide/CO2 / Ammonia NH3) & HFC/HFC blends (e.g. R410a/R407C / HFO blends such as R1234yf etc.)

Each time it is completed a score sheet is available

Can be completed multiple times – to show progress or impact of different quest approaches

Can be by site or group

Can be completed anonymously

Additional data collection questions at end are optional

1. Prioritise efficiency

End User guidance

3. Know your assets

- 4. Take a systems approach
 - 5. Think long term
 - 6. Make well informed decisions

Opportunities

- Manufacturers should be encouraged to design cabinets with higher evaporating temperatures (where feasible) and fit doors on chilled cabinets.
- Improved condenser and gas cooler cleaning regimes should be adopted to reduce head pressures and smart controllers developed to monitor coil fouling.
- Site sub-metering and digital twinbased optimisation systems for refrigeration systems should be implemented.
- F-Gas logs should be maintained and kept on site, and systems should transition to ultra-low GWP refrigerants with support from regulation.

Best practice

- Reduce refrigerant leakage during commissioning and operation
- Ensure F-Gas logs are maintained and available on site
- Sub-meter energy use of refrigeration system
- Pro-active refrigeration optimisation (assess performance against a digital twin) sub-meter refrigeration components
- Fit doors on chilled cabinets to reduce infiltration
- Regularly clean condenser to avoid fouling
- 7. Reduce condensing temperature
- Use anti-fog glass and more thermal efficient glass doors on freezer cabinets or switch off freezer door frame heaters intermittently to reduce power input and heat load in to cabinet

Technologies minor for retrofit

The table blow shows technologies with potential for refrigerated retail display cabinets were assigned to one of three TRL (Technology Readiness Level) ranges. These are: (i) TRL 8-9 (readily available); (ii) TRS eare: (i) TRD development), or (iii) TRL 1-4 (at an early stage of development). Payback periods for the installation of each technology were also noted, where information was available.

No.	Technology	Description	System energy saving	Payback period (years)
1	Doors on cabinets	Installing doors on open display cabinets	32%	3.7
2	Strip curtains	Clear, plastic strips hung over front of refrigerated cabinets, to prevent air infiltration	32%	1
3	Reducing/ floating head pressure	Condenser head pressures float down as ambient air temperatures decrease	28.4%	Depends on whether additional equipment installed
4	Night blinds and covers	Physical barrier reducing air entrainment and radiation heat transfer to products	17.2%	2 (new cabinet); 4 (retrofit)
	Aerofoil air-guide	Use of guides or deflectors on open fronted cabinets to reduce air infiltration	16%	< 0.5
6	Shelf and well risers	Shelf risers- strips of (usually clear) plastic of ~50 mm height fitted to front of cabinet shelves. Well risers- (plastic or glass) up to 100 mm high	16.0%	1-1.5
7	Suction pressure control	Use of electronic EPR to vary pressure using a stepper motor to control temperature	11.4%	<1
8	Motor efficiency controllers (MECs)	Reduce power supplied to induction motors as voltage waveform trimmed by MEC	10.5%	0.6 to 2.4 depends on system
9	Improved glazing (if doors fitted)	Installation of glass with a low emissivity (ϵ = 0.2) reflective coating for cabinets	10%	N/A
10	Adiabatic condensers	Operate by spraying water into the air supply of air-cooled condensers or supplying water to an evaporation media (pad) fitted to the front of the condenser.	8.2%	<2

TICR decarbonisation pathways - Energy

TICR decarbonisation pathways

Policy opportunities

Demand Reduction & Behavioural Shifts

Refrigerant Transition

System Efficiency

Clean Energy Integration

THE ROUTE TO NET ZERO REFRIGERATION

2050

- Step change in skills end users, designers, technicians & maintenance
- Granular data to measure & monitor current emissions & identify suitable benchmarks
- Adoption of low GWP refrigerants and training
- Incentivisation of energy efficient technologies

(MEPS, guidance and tax rebates)

 Capitalise on potential energy savings beyond refrigeration boundary

(e.g. PV and Waste heat recovery)

Conclusions

- TICR sectors in the UK emit 6.61 MtCO2e/year and consume 17.8 TWh annually
- Operational inefficiencies and skills shortages drive high emissions, highlighting the need for better maintenance, monitoring, controls, and refrigeration expertise
- Ready and emerging technologies: such as advanced controls, low-GWP refrigerants, and waste heat recovery offer potential to improve efficiency and cut emissions
- Future decarbonisation pathways could reduce emissions to near zero (0.05 MtCO2e) by 2050, leveraging technology adoption, renewable energy integration, and waste heat use
- Policy and industry must prioritize skills development, data transparency, refrigerant regulation, and collaborative innovation to enable the sector's net zero transition

Website netzerorefrigeration.uk/

Sector Specific Resources, Reports and Downloads

they become available. Downloads are free but you will be asked to register when requesting a download.

Roadmaps, benchmarking reports, sector-specific guidance, training materials and other publications will be added to this area for download as

Thank you

Catarina Marques | London South Bank University